CHANGING THE SUBJECT

I like to think of these things as "doing it in reverse". If you "reverse" BODMAS to the required term, it will end up "on its own".

Example 1: change the subject of y = 3x + 7 to "x"

First of all x is multiplied by 3, then 7 is added

In reverse we subtract 7, divide by 3 (In that order...reverse BODMAS) to get $x = \frac{y-7}{3}$

Example 2: change the subject of
$$V = \frac{a^2}{5}$$
 to "a"

First of all *a* is squared, then it is divided by 5

In reverse we multiply by 5 then take a square root (In that order) to get $a = \sqrt{5V}$

Now try to change the subject of all of these to x
--

1	A = x - 2	2	B = 2x + 1	3	$C = \frac{2x}{3}$
4	D = ax + 7	5	$E = \frac{x}{5} + 2c$	6	F = 3a + 2x
7	$G = \pi x + 7a$	8	$H = \sqrt{x}$	9	$J = 3x^2$
10	$K = \frac{x^2}{10}$	11	$L = \sqrt{x-5}$	12	$M = \frac{3}{5}x^2$

SOLUTIONS

x = A + 2	$x = \frac{B-1}{2}$	$x = \frac{3C}{2}$
$x = \frac{D-7}{a}$	x=5(E-2c)	$x = \frac{F - 3a}{2}$
$x = \frac{G - 7a}{\pi}$	$x = H^2$	$x = \sqrt{\frac{J}{3}}$
$x = \sqrt{10K}$	$x = L^2 + 5$	$x = \sqrt{\frac{5M}{3}}$