Changing The Subject

I like to think of these things as "doing it in reverse". If you "reverse" BODMAS to the required term, it will end up "on its own".

Example 1: change the subject of $y=3 x+7$ to " x "
First of all x is multiplied by 3 , then 7 is added
In reverse we subtract 7, divide by 3 (In that order...reverse BODMAS) to get $x=\frac{y-7}{3}$

Example 2: change the subject of $V=\frac{a^{2}}{5}$ to " a "
First of all a is squared, then it is divided by 5
In reverse we multiply by 5 then take a square root (In that order) to get $a=\sqrt{5 V}$

Now try to change the subject of all of these to x

1	$A=x-2$	2	$B=2 x+1$	3	$C=\frac{2 x}{3}$
4	$D=a x+7$	5	$E=\frac{x}{5}+2 c$	6	$F=3 a+2 x$
7	$G=\pi x+7 a$	8	$H=\sqrt{x}$	9	$J=3 x^{2}$
10	$K=\frac{x^{2}}{10}$	11	$L=\sqrt{x-5}$	12	$M=\frac{3}{5} x^{2}$

Solutions

$x=A+2$	$x=\frac{B-1}{2}$	$x=\frac{3 C}{2}$
$x=\frac{D-7}{a}$	$x=5(E-2 c)$	$x=\frac{F-3 a}{2}$
$x=\frac{G-7 a}{\pi}$	$x=H^{2}$	$x=\sqrt{\frac{J}{3}}$
$x=\sqrt{10 K}$	$x=L^{2}+5$	$x=\sqrt{\frac{5 M}{3}}$

